26 September 2014

Killer shoes - The importance of footwear traction in mountain trail running

Catching my breath I finally took the time to turn around and look out over the valley. There were still thick veils of mist lower down, but the rain had finally abated after constantly falling since last night. Looking out over the snow-clad mountains on the other side of the valley I could see the first stars of the new night breaking through the rapidly vanishing clouds. I turned off the headlight and let the night surround me. It was warm without any wind and I was surprised that I anyway could feel soft movements from the thick wet grass around my ankles. Slowly turning around towards the slope I touched the wet grass with my hands. I leaned forward a little bit to let wetness and cold of the grass caress my warm face. “Swimming in a green waterfall of grass”, I thought. Suddenly the adrenaline started to rush through my body again and I pulled up my head and turned on my headlamp.  Looking up over the grassy slope I thought I could see solid rock that must be part of the ridge. “Not far away now”, I thought as I moved my right foot up towards what looked like a more solid tussock. Feeling the rubber of my outsole dig into the soil and fine gravel under the grass I put my weight on the foot and followed after with my body. “Just one step at a time, Peter, just one step at a time”. After another step upwards I stopped again and looked down the slope. I could not see Otto, but knew he must be close on the other side of the little spur I had crossed further below. “It might be possible here, Otto” I screamed. “It might finally be possible”.

It was the second night of Petite Trotte à Léon (PTL) and we were standing on a horrible wet grassy slope of Croix de Tousse at an altitude of around 2800 meters high over the treeline on our way up towards the crossing of Côte 2922 to Petite Vélan. I still do not know exactly how we could have ended up off route and by how much. When I looked at the GPS it one minute said that we were only 10 meters from the route, the next it said 40 – a huge difference in a terrain like this. Not able to rely on the GPS we tried for a long time to find our way on the map – which of course was not detailed enough as the elevation curves did not catch how steep parts of the slope was and we often found ourselves stuck and had to climb down again. I also still do not know exactly how steep it was –  definitively too steep as we had to climb using both feet and hands and trying to find fixing points for them so part of the slope was probably a grade 4 scrambling.

Although the climb upwards in the slippery wet grass on this crazy steep slope was one of the scariest things I have ever done in my life, it was nothing compared to when we had to descent to try to find another route upwards towards the ridge. It was here I perhaps for the first time realized that your life in the mountains might depend on your shoes. Both Otto and I had of course so called trail running shoes that according to the manufacturer should be suitable for running in the mountains. However, while my fairly new La Sportiva Bushido shoes had a fairly good grip on the wet grass, Otto’s slightly more worn shoes of another brand had what looked like almost no traction. Numerous times during our wayfinding on the less step parts of the grassy slope his feet suddenly lost their grip and flew up and he fell hard backwards. Each time I was really scared that he should break his back, a leg, or worse, hit his head or not being able to arrest the fall after touching ground and rolling down the slope. It was certainly a close call several times.  In retrospect, we should of course have tested our shoes at various conditions before the race, and steep grassy slope we learned painfully during PTL are quite common in the Alps if you are not following any normal path or trail. Paradoxically, Otto had in contrast to me actually tested his shoes in the mountains in the northern part of Sweden just before the race, but obviously not on wet grassy steep slopes, while I think I was just lucky with my shoe selection. We learned later on in the race that the solution was for Otto to put on his crampons each time we crossed wet grassy and muddy terrains, the crampons certainly do work well on other surfaces besides ice, but this night we were probably too scared and shocked to come up with this simple solution.

Not being a professional athlete and not having the possibility to test several shoes in mountain conditions I started to look at what data and research that is available about the traction of outsoles of trail running shoes. Is there any comparative data available? Any standards in how to report the traction on different surfaces? Sadly, I did not find much. Almost all major trail shoe brands, like the one Otto was wearing, are making bold claims on their webpages about how good the traction is in all sorts of terrain. Just reading some of these claims make me skeptical – how could a shoe with good grip on both dry and wet rock also be good for mud, wet grass and even wet wood? Some brands, actually for instance Otto’s again, show rather impressive research data on their webpage regarding traction. Obviously, these data did not correlate well with how the shoes actually performed out on the real mountain and it makes me question the value of research performed by the manufacturer itself when there is no independent control of the data. The same thing probably hold true for at least part of the shoe reviews posted by bloggers and others who have received the shoes for free. Furthermore, Otto’s shoes were not as new as mine, but the outer soles were still well defined. How is the traction of the shoes affected by wear – when is it time to buy new ones? If readers of this blog could point me towards solid comparative independent data on these features of trail running shoes I would be very happy, but I doubt such data exist.

What I did find was a list of recommended shoes at skyrunning races on the homepage of the International Skyrunning Federation (see figure below). In their recommendation they rate the shoes as good or very good for the various types of skyrunning disciplines. It is not described how their selection and rating of shoes were being done, but I assume it involved some kind of testing of the shoes. Of note, Otto’s brand is not among the recommended in this list and it would have been good to know if they had tested the shoes and found them not meeting the standards for inclusion or if this just means that they have not tested them. Obviously, I also found a number of trail running shoe tests in various running magazines, but while features such as weight, drop, presence of rock protection and the width of the toe box naturally are objective measures differing between shoes, traction is for almost all trail shoes tested scored high in these tests and there is in most cases difficult to differentiate the shoes from each other depending on this.  Almost no test takes into account the performance on the varying surfaces in the mountain environment such as for instance dry and wet rocks, loose talus and gravel, wet grass, mud and wet roots.
 
List from ISF of recommended shoes 2014
Looking at the scientific literature about shoe – surface traction I could not find any study of trail, mountain and sky running shoes or even normal athletic running shoes. More surprisingly, I could neither find any good studies regarding traction of climbing footwear, only one study about traction in ladders shoes (Chang et al “Available friction of ladder shoes and slip potential for climbing on a straight ladder” Ergonomics 2005; 48: 1169) and a general article about the slip-resistance of different types of rubber (Manning et al “The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane” Appl Ergon. 2001; 32: 185). In other sports the traction developed at the shoe – surface interface has been extensively studied as it has been shown to influence injuries. Many studies have focused on the rotational traction torque forces and friction on various surfaces as higher forces in numerous studies have been associated with higher joint loading and in particular knee and ankle injuries (see for instance Wannop et al “Footwear traction and lower extremity noncontact injury” Med Sci Sports Exerc 2013; 45:2137). There are plenty of publications about this in for instance soccer (De Clercq et al “Cutting performance wearing different studded soccer shoes on dry and wet artificial turf” Footwear Science 2014; 6: 81; Schrier et al “Shoe traction and surface compliance affect performance of soccer-related movements” Footwear Science 2014; 6: 69; Smeets et al “Torsional injuries of the lower limb: an analysis of the frictional torque between different types of football turf and the shoe outsole” Br J Sports Med 2012; 46: 1078; Severn et al “Science of synthetic turf surfaces: investigation traction behavior” J Sport Engin Technol, 2011; 225: 147), American football (Wannop et al “Footwear traction and lower extremity noncontact injury” Med Sci Sports Exerc 2013; 45: 2137; Iacovelli et al “The effect of field condition and shoe type on lower extremity injuries in American Football” Br J Sports Med 2013; 47: 789);  tennis (Clarke et al “The development of an apparatus to understand the traction developed at the shoe-surface interface in tennis” J Sport Engin Technol, 2013; 227: 149; Damm et al “The effects of surface traction characteristics on frictional demand and kinematics in tennis” Sports Biomech 2013; 12: 389) and golf (Worsfold et al “Kinetic assessment of golf shoe outer sole design features” J Sports Sci Med 2009; 8: 607; Worsfold et al “Low handicap golfers generate more torque at the shoe-natural grass interface when using a driver” J Sports Sci Med 2008; 7: 408; Worsfold et al “A comparison of golf shoe designs highlights greater ground reaction forces with shorter irons” J Sports Sci Med 2007; 6: 484).

What I did find, however, was a number of scientific studies how the gait and motor pattern is changing when running on a slippery or uneven surface (for instance Sterzing et al “Running on an unpredictable irregular surface changes lower limb biomechanics and subjective perception compared to running on a regular surface” J Foot Ankle Res 2014; 7: A80; Chang et al “Contribution of gait parameters and availability coefficient of friction to perceptions of slipperiness” Gait Posture 2014; Epub ahead of print; Voloshina et al “Biomechanics and energetics of walking on uneven terrain” J Exp Biol 2013; 216: 3963; Gates et al “Kinematic strategies for walking across a destabilizing rock surface” Gait Posture 2012; 35: 36; Cappelini et al “Motor patterns during walking on a slippery walkway” J Neurophysiol 2010; 103: 746; Fong et al “Greater toe grop and gentler heel strike are the strategies to adapt to a slippery surface” J Biomech 2008; 41: 838). Not surprisingly, it appears runners on a slippery surface lower their limb positions and increase the stiffness of the legs in order to keep the center of mass (COM) more aligned with the supporting limbs and also use a gentler heel strike and relies more on the toe grip. These gait changes require more energy and I have previously written a blog post about the positive training effects of running on snow and sand and the same thing could probably be applied to wet grass and mud.

I also found a very interesting recent article looking specifically at the footwear traction and kinematics of walking at different directions in slope terrain (Wannop et al “Footwear traction and three-dimensional kinematics of level, downhill, uphill and cross-slope walking” Gait Posture 2014; 40: 118). In this study, ten participants walked along in various directions across a 19° inclined walkway. Quite surprisingly to me, the required traction at touchdown in order to not slip was similar at different sloped levels compared to level walking and the authors speculate that the increased likelihood of heel slipping during hiking down a steep slope therefore potentially is due to the presence of loose material (rocks and dirt), rather than the overall lack of traction. Not surprising, traverse walking cross the slope required the most rapid foot-floor eversion, which the authors speculate could place the hiker at higher risk of injury with a misstep or if there was a slight slip. I think the same results probably would be achieved in running as well.

While it is interesting to know that you change your gait when running on a slippery surface or on a steep slope, and thus probably could train your ability to do so, it is clear that it is not enough and that in order to avoid a fall during a mountain and sky running you also need shoes with good traction. In the lack of good independent comparative data about the traction of various shoes I think you still have to rely on trial and error yourself or talking to other runners or, if they have a blog or have written a review, reading about their experiences. I was reassured before PTL when I saw that Jared Campbell had used La Sportiva Bushido when he won and completed Barkley Marathons earlier this year. However, I think shoe selection is something very personal and of course there are other important factors than only traction. I am very happy with my selection of shoes for PTL. Last year I was running TDG in La Sportiva Helios and, although the traction was great and they were really light and comfortable, they did not offer the required protection for the last part of the race, while the Bushido did that during PTL. Still, for a shorter mountain or skyrunning race I would probably select Helios or Salomon S-Lab Sense 3 Ultra, and for a muddy trail race I would probably choose Salomon S-Lab Fellcross 3. For training I rely much on several old Asics shoes I have in my closet when running on roads, Salomon S-Lab XT models in mixed terrain and recently more frequently also on Hoka Hoka Rapa Nui shoes. But, we are soon entering a new season with new shoes coming out from the different brands so next year the selection will probably be different. Lastly, I think disclosure is important in a blog post like this and this year I have not received any shoes for testing and have not been sponsored in any way.
 
You also have to like the look of your shoes -
after all this is what you see most of the times in the later stages of a long race
(Picture from TDG 2013)
 

18 September 2014

Testosterone and mountain ultramarathon running

This past weekend I put on my running shoes for the first time since Petite Trotte à Léon (PTL) . Despite only jogging slowly for 7 kilometers (4.3 miles) I developed a massive delayed onset muscle soreness in my quadriceps. It felt like I had lost a lot of my muscle mass in my legs, and, thinking about it and looking at my legs I think that might actually been what has happened. I probably literally consumed my own leg muscles due to the catabolic energy state I was in during and immediately after the race. This made me think more about the wasted state I have been in during the past two weeks and what hormonal changes that could lead to this. Looking at my general symptoms of tiredness, poor concentration, lack of vigor and vitality, massive night sweats, occasional hot flushes and sleep disturbance I quickly focused in on low testosterone. Other cardinal symptoms of low testosterone levels include loss of morning erection and reduced sexual desire/loss of libido. Thinking back I have at least to some extent suffered from partly these same symptoms transiently for a while after Tor des Geants (TDG) and other longer ultramarathons I have done in the past. The other day I read John Burton's great race report from Tahoe 200 and in the aftermath he appears to have suffered from some of the same symptoms as well and I have had other runners telling me similar stories.

The suspicion that ultramarathon running might cause low testosterone levels made me read more about the subject and, regretfully, it appears at least from the few studies conducted so far that longer ultramarathon running indeed can lead to testosterone deficiency and even secondary hypogonadism in males. In this post I will review the effect of ultramarathon running, in particular in mountains, on testosterone and partly also other hormones and substances in the hypothalamic-pituitary-gonadal/testicular (HPG/HPT) axis (see figure below). This will be a post focused on the effects in men, mostly as the amount of literature on the effects of training on the female reproductive system is very extensive and clearly requires a separate review.

The hypothalamic-pituitary-gonadal (HPG) axis
 
Testosterone levels following Western States Endurance Run (WSER)

The first article I stumbled upon was a recent study by Kupchak and colleagues of 12 male runners completing the 161 km (100 miles) race Western States Endurance Run (WSER) (Kupchak et al “The impact of an ultramarathon on hormonal and biochemical parameters in men” Wilderness Environ Med 2014; 25: 278-288). The 12 runners ran an average of 98.7 (81.9 -115.5) km per week before the race and had a mean finish time of 25.08 (22.53 – 27.62) hours. Quite interestingly, 8 out of 12 runners had prerace values of testosterone lower than the reference limits in their assay (< 14 nmol/L). Still the values of both testosterone and luteinizing hormone (LH) decreased even further from these low baseline values during the race and were significantly lower both immediately and one-day after the race compared to the values before the race. Also sex hormone-binding globulin (SHBG) decreased during the race, while cortisol, a hormonal marker of stress, increased significantly leading to a significant and markedly lower Testosterone : Cortisol ratio. One of the problems with the study is that the blood collection for analysis occurred at various times in association with the finishing of the race and hormones such as testosterone exhibit a clear diurnal variation. Also, the authors used an immunoassay rather than today’s golden standard mass spectrometry in measuring the levels of testosterone. Still, the magnitude of change observed was clearly well beyond what could be explained by circadian undulation and the levels were clearly indicative of testosterone deficiency.

Other studies of testosterone levels following marathon and ultramarathon races

Kupchak’s study was clearly not the first in this area as there have been a large number of studies published since the beginning of the 1980’s showing statistically significant reductions of testosterone levels in blood and saliva during a marathon or ultramarathon race compared to the pre-race levels (see table below which include some selected studies I could find).
 

Study
Distance (km)
Subj
Reference
Kupchak 2014
161 (WSER)
12
Wilderness Environ Med 2014; 25:278
Tauler 2014
104
64
Appl Physiol Nutr Metab 2014; 39: 560
Kraemer 2008
161 (in cold)
10
Br J Sports Med 2008; 42: 116
Karkoulias 2008
42.2
20
Eur J Intern Med 2008; 19: 598
Ishigaki 2005
284 (over 8 days)
13
J Phys Antl Appl Hum Sci 2005; 24: 573
Fournier 1997
110
11
Int J Sports Med 1997; 18: 252
Marinelli 1994
42.2 (high altitude)
6
Horm Res 1994; 41: 225
Dressendorfer 1991
400 (over 15 days)
19
Med Sci Sports Exerc 1991; 23: 954
Raschaka 1991
1000 (over 20 days)
42
Z Ernahrungswiss 1991; 30: 276
Pestell 1989
1000
8
Clin Exp Pharm Physiol 1989; 16: 353
Tanaka 1986
42.2
7
J Endocrin Invest 1986; 9: 97
Kuusi 1984
42.2
20
Metabolism 1984; 33: 527
Schürmeyer 1984
1100 (over 20 days)
5
Int J Androl 1984;7:276


Testosterone levels in other endurance sports

This is in contrast to shorter runs of less than one hour where there actually appears to be a rise in testosterone levels during the actual run (see for instance Tremblay et al “Influence of exercise duration on post-exercise steroid hormone responses in trained males” Eur J Appl Physiol 2005; 94: 505 and Hackney et al “Testosterone responses to intensive interval versus steady-state endurance exercise” J Endocrinol Invest 2012; 35: 947). It is, however, in line with findings of a decrease in testosterone during longer endurance races in other sports. For instance during adventure racing for over 6 days (Berg et al Scand J Med Sci Sports 2008; 18: 706), cross-country skiing for 75 km and road bicycling for 4 hours (Vasankari et al Acta Endocrinol 1993; 129: 109), an Arctic ski expedition (Bishop et al Acta Astronaut 2001; 43: 261), Ironman triathlon (Neubauer et al Eur J Appl Physiol 2008; 104: 417) and military special operations training for 5 days (Opstad et al Eur J Appl Physiol Occup Physiol 1982; 49: 343) marked decreases in testosterone have been observed. All of these studies in both running and other sports have only looked at hormonal levels and not any symptoms or behavioral changes associated with these changes, like lowered sex-drive, and there is clearly a need for studies investigating this.

Baseline levels of testosterone in runners depending on weekly mileage

There have also been a number of studies performed looking at the normal baseline testosterone levels of runners and some studies have specifically analyzed the correlation between these levels and the weekly running mileage. In an important study of 53 runners published already in 1992, MacDougall and colleagues showed a correlation between weekly running mileage and testosterone levels (MacDougall et al “Relationship among running mileage, bone density, and serum testosterone in male runners” J Appl Physiol 1992;73: 1165). De Souza and colleagues published another similar study in 1994 where they looked at baseline testosterone levels in 11 high mileage runners (108 ± 4.5 km/week), 9 moderate mileage runners (54 ± 3.7 km/week) and 10 sedentary controls of similar age (28.3 ± 1.5 years) (De Souza et al “Gonadal hormones and semen quality in male runners. A volume threshold effect of endurance training” Int J Sports Med 1994; 15: 383). Interestingly they found a dose-response effect with regards to running volume as the levels of both total testosterone and free testosterone were lower in the high mileage group compared to the other groups. This also correlated with decreased sperm quality in the high mileage group. A similar correlation was found by MacKelvie and colleagues studying 5 high mileage runners (> 95 km/week) and 7 moderate mileage runners (64-80 km/week) and comparing them to sedentary controls (MacKelvie et al “Bone mineral density and serum testosterone in chronically trained, high mileage 40-55 year old male runners” Br J Sports Med 2000; 34: 273).Comparing running with endurance training one study showed that it is only the former where low baseline values of testosterone can be found together with subclinical modifications in semen characteristics (Arce et al “Subclinical alteration in hormone and semen profile in athletes” Fertil Steril 1993; 59: 398).

These findings are in contrast to other studies, for instance by Ayers et al in Fertil Steril 1985; 43: 917, Bagatell et al in Fertil Steril 1985; 43: 917 and Cooper et al in Eur J Endocrinol. 1998; 138: 517, where no low baseline levels of at least free testosterone could be observed in runners. However, these studies did not include high mileage runners. A drawback with all of these studies is also that they are retrospective. A recent interesting prospective randomized controlled trial from Iran of 286 “habitual aerobic exercisers”, training for an average of 1.8 h per day 5 days a week before entering the study, looked at the effects of a 60-week training program where the subjects ran for 120 minutes 5 times a week at either ~60% of VO2max or ~80% of VO2max (Safarinejad et al “The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamus-pitutary-testis axis, and semen quality: a randomized controlled study J Endocrinol 2009; 200: 259). In both groups there was marked decrease of testosterone levels and semen quality and these changes were observed already from 12 weeks into the study. That longer period of increase in training appears required for a decrease in testosterone is indicated in a study by Hall et al where 2 weeks of running exercise at 186% of normal training intensity was not enough to lead to any hormonal changes (Hall et al “Effects of intensified training and detraining on testicular function” Clin J Sport Med 1999; 9: 203). Also, it appears again that the training intensity needs to be quite high to lead to testosterone decrease as a prospective study of 24 marathon runners did not show changes in this hormone, despite changes in semen parameters (Jensen et al in Fertil Steril 1995; 64: 1189).

Testosterone levels following tapering and following overtraining/overreaching in runners

Quite interestingly, following cessation of the training program in the Iranian study the testosterone levels rather quickly returned to the same values, or even somewhat higher, than before the start of the training period. This is in contrast to a study by Houmard and colleagues where 10 runners were followed for 4 weeks of normal training (81 ± 5 km/week; 6 days/week) followed by a 3 week tapering period with a 70% training reduction (to 24 ± 2 km/week; 5 days/week) (Houmard et al “Testosterone, cortisol, and creatine kinase levels in male distance runners during reduced training” Int J Sports Med 1990; 11: 41). The low testosterone baseline values observed during the training period were in this study not restored by the reduction in training. I clearly think more studies are needed on the effect of tapering on testosterone and other hormonal levels. Another subject were more studies are needed is the role of testosterone and the testosterone/cortisol ratio in overtraining syndrome (OTS) / overreaching (OR). The current consensus standpoint appear to be that low testosterone levels and a low testosterone : cortisol ratio only indicates actual physiological strain and cannot be used for diagnosis of OTS / OR. While I agree with this, I still think it too early to completely rule out a role for testosterone in the development of OTS /OR and further studies are needed to see if this indeed might be the case. Also, another question I have thought about is whether fluctuations in testosterone levels that might occur after endurance racing and in tapering could influence mood (swings) and well-being, something which in numerous other studies have been shown to be influenced by testosterone. I am sorry to be repetitive when I again ask for studies of this in runners.

Testosterone levels at high altitude

Mountain ultramarathons like Petite Trotte à Léon (PTL) and Tor des Geants (TDG) are not only long in terms of kilometers and race time, but also occurs at comparatively high altitudes and are associated with a marked degree of sleep deprivation in most runners at the later parts of the race (Saugy et al “Alterations of neuromuscular function after the World's most challenging mountain ultra-marathon" PLoS One 2013; 8: e65596). Both of these factors have actually independently been associated with a decrease in testosterone levels. Studies of several expeditions to the Himalayas have revealed markedly decreases in testosterone levels coupled with changes in the sperm quality (see for instance Okumura et al High Alt Med Biol 2003; 4: 349; Benso et al Eur J Endocrinol 2007; 157: 733 and Pelliccione et al Fertil Steril 2011; 96: 28). Interestingly, a study by Mirsepasi and colleagues show a decrease in testosterone after only 30 minutes running at 70% of maximal heart rate already at an altitude of 3250 meters (Mirsepasi et al “Effect of submaximal aerobic exercise at the altitude of 3250 meters on levels of serum cortisol, testosterone and testosterone to cortisol ratio in active young men” Adv Environment Biol 2013; 7: 854).

Testosterone levels following sleep deprivation

A number of studies also show that total sleep deprivation leads to a reduction of testosterone levels (for instance Schmid et al Clin Endocrinol 2012; 77: 749 and Jauch-Chara et al PloS One 2013; 8: e54209). The production of testosterone is dependent on sleep and requires at least 3 hours of deeper so called nonrapid eye moment (NREM)  slow wave sleep (SWS), which normally occurs in the first part of a sleep episode (reviewed in Wittert “The relationship between sleep disorders and testosterone in men” Asian J Andrology 2014; 16: 262). This is interesting as at least I have had the strategy to not sleep for more than 2 hours at each occasion in both TDG and PTL and that would therefore not be enough to stimulate a normal testosterone production.

The Exercise-Hypogonadal Male Condition and the effect of running on male fertility

One of the researchers who has published perhaps most scientific papers on the subject of male reproductive dysfunction following endurance training is Anthony C. Hackney at University of North Carolina in Chapel Hill in the USA. He has coined the syndrome “Exercise-Hypogonadal Male Condition” or EHMC (reviewed in for instance Lane & Hackney “Reproductive dysfunction from the stress of exercise is not gender specific: The “Exercise-Hypogonadal Male Condition” J Endocrinol Diab 2014; 1: 4). That endurance training, and in particular ultra-endurance training, might lead to impaired fertility in males have been discussed also in other review articles, for instance by Arce and colleagues (Acre et al “Exercise and male factor infertility” Sports Med 1993; 15: 146), Brandt and colleagues (Brant et al “Male athletic activities and their effects on semen and hormonal parameters” Phys Sportsmed 2010; 38: 114), du Plessis and colleagues (du Plessis et al “Is there a link between exercise and male factor infertility?” Open Rep Sci J 2011; 3: 105) and Vaamonde and colleagues (Vaamonde DM et al “The impact of physical exercise on male fertility” in the book Male Infertility 2014; 47-60 edited by du Plessis et al). Nevertheless, there are no good controlled studies of this and further studies are clearly needed to determine whether male ultramarathon runners really have impaired fertility in general.

What are the mechanisms behind the low testosterone levels following an ultramarathon?

Today we can only speculate why prolonged endurance activities such as an ultramarathon might lead to lower testosterone levels. Testosterone is produced in the testis and it has been speculated that reduced testicular blood flow or damaging testicular heating might influence the production. Others have advocated the increase in testosterone/androgen utilization in the repair of tissues might lead to increased consumption of testosterone leading to lower blood levels. Also the stress of prolonged endurance activities might lead to an inflammatory reaction acting at various levels of the HPG-axis. The response of the body to an ultramarathon might not only be a reactive response to damaging stimulus, but also a way for the body to protect itself in the longer run and it has been speculated that one positive effect of low testosterone levels in male ultramarathon runners is that it limits development of excessive muscle mass. Also, during the actual race it might lead to mobilization of amino acids for energy consumption through gluconeogenesis, hence leading to use of the muscles for energy. I have encountered some athletes, in particular in adventure racing, advocating  muscle strength training sessions in association with the endurance race or early during the recovery phase and it would be interesting to study whether this could counteract some of these effects and actually raise the testosterone levels.

Negative effects of low testosterone levels in male ultramarathon runners

No studies have been conducted on possible negative medical effects of low testosterone levels in male ultramarathon runners besides some studies showing that, rather surprisingly, low baseline levels of testosterone appear not to be associated with a decrease in bone mineral density (BMD) (see references above to MacDougall et al 1992 and MacKelvie et al 2000). Low testosterone levels and hypogonadism in middle aged and elderly men appear quite common and have been associated with male infertility and the symptoms I mentioned in the beginning of this post (reviewed in Wu et al “Identification of late-onset hypogonadism in middle-aged and elderly men” N Engl J Med  2010; 363: 123; Basaria “Male hypogonadism” Lancet 2014; 383: 1250, Finkelstein et al “Gonadal steroids and body composition, strength and sexual function in men” N Engl J Med 2013; 369: 1011 and Hackett et al “Testosterone deficiency, cardiac health, and older men” Int J Endocrinol 2014; 143763). There are also indications that low testosterone levels might lead to increased incidence of cardiovascular diseases and even higher mortality, but in the studies conducted so far there are a number of co-founding factors such as presence of type 2 diabetes and it is difficult to say what is the hen and the egg in these studies. There is clearly a need to see study if there are any long-term health effects, if any, of low testosterone levels in trained male ultramarathon runners and it will for instance be interesting to see whether there could be a correlation between testosterone levels, weekly mileage and cardiac health in runners. In these studies it would have been interesting to see the effects of testosterone replacement therapy, which is becoming increasingly popular in hypogonadism in elderly men, but this would of course be impossible and not ethical as testosterone in all forms rightly is classified as a prohibited performance enhancing drug and is on all doping lists.

Summary

In summary, I think that it has been shown quite convincingly in a number of studies that prolonged endurance activities can lead to a decrease in testosterone levels. In longer mountain ultramarathon races also the high altitude and the sleep deprivation of the runners might further contribute to this decrease. Even though some studies indicate that runners with a high weekly training mileage have lower baseline testosterone levels than the normal aged matched population, I still think further studies are needed to determine whether ultramarathon induced hypogonadism really exists. The long-term health effects of decreased testosterone in ultramarathon runners are also not known today.  

12 September 2014

Longing for the mountains again

This morning it was exactly one year since I finished Tor des Géants (TDG). I have followed this year’s race intensively on the web and the weather and the conditions appear also this year to have been favorable. My time of 118 hours, 18 minutes and 55 seconds, which last year gave position 98, would this year give position 108 so the competition appears roughly the same as well. It is still too early to say how many will reach the finish line in Courmayeur, but the number of drop-outs appear slightly less in 2014, probably due to the large number of runners that was forced to stop in the rainstorm the first night last year. There were many Swedish runners who had signed up this year, but unfortunately most appear to have DNF due to for instance bad timed cold and respiratory infections. Nevertheless, Jesper Fägersten just completed the race after an amazingly rapid finish over the last pass Col Malatra this night and came in to Courmayeur in 110th place in a time of around 118 hours 39 minutes earlier this morning. Congratulations!!

The last two weeks I have been constantly asked what the difference is between TDG and Petite Trotte à Léon (PTL). My answer is in short: “Everything”. The longer answer is that while TDG really is a mountain ultramarathon trail running competition, PTL is perhaps the ultimate test how to manage yourself and your team in a challenging Alpine environment under stress. Just look at the speed of this year’s winners of TDG versus PTL. Franco Collé had an average speed of 4.60 km/h when he won and finished TDG’s 330 kilometers in 71 hours 49 minutes, while Alain Steeman and Bernard Godon in the winning Belgian team Les Patrouilleurs Célestes had an average speed of 2.54 km/h when winning and finishing this year’s roughly 294 kilometers long PTL course. PTL was certainly steeper with roughly D+ 26500 meters and a staggering D+/km of 90.2, compared to TDG with D+ 24000 meters and a D+/km of 72.7. However, there were clearly quite long runnable flatter sections of PTL as well and I think the main difference is in the frequent crazy steep and technical sections at PTL which almost requires climbing. Each such passage at PTL, as for instance the descent from Col d’Enclave, certainly took very long time. That, in combination with the need to slow down due to sometimes difficult navigation during long sections without a defined path, clearly made the difference in speed. However, I was surprised to see that mine and Otto’s average speed still was 2.19 km/h, quite high compared to my average speed of 2.79 km/h at TDG last year, in particular as we also made slightly longer breaks for sleep and refreshment at PTL than I did at TDG last year. So, perhaps we were running at least a little at PTL as well after all. As mentioned before, I think Jill Homer has written a good comparison between PTL and TDG, and I look forward to her race report from TDG this year to see if she still comes to the same conclusions now after having done both races.  

 

I have still not put on my running shoes after PTL, but this week I have gradually felt stronger and stronger and I have now already started to look forward to next year’s challenges. I think it a good sign that I have already started to dream about and long for the next mountain adventure. Despite being inspired by following TDG this week, I think next year’s calendar will probably most likely be filled with some shorter technical Skyrunning races instead. Also, I very much enjoy the films and race reports that now start to emerge from PTL.  The Finish top team Team Rumue with Janne Marin and Antti Niinikoski has posted a great film available here:
 


 
Also the winning team Les Patrouilleurs Célestes has posted a film here:


 
For those of you reading Danish Moses Lovstad has posted a great race report of their DNF at http://moseslovstad.com/2014/09/06/ptl-2/.

04 September 2014

Survived Petite Trotte à Léon

I am shattered. Utterly shattered both physically and mentally. The “Petite” Trotte à Léon (PTL) was a long walk in the shadows of death and fear and it looks like it will be quite a recovery period. I am extremely grateful to have survived and to have lived the whole experience without any major incidents. And, most important of all I am happy to have done this all the way together with Otto Elmgart, a genuine great friend and perhaps the strongest person both physically and mentally I have ever met. Our accomplishment was without doubt the greatest experience I have had of the power of true teamwork and I cannot thank Otto enough for this. We finished our approximately 295 kilometer long journey with 26500 D+ meters early on Sunday morning after 134 hours 09 minutes and 37 seconds as the 14th team returning to Chamonix. Three hours before that, during the descent from Bellevue to Les Houches through the dark steep forest of Arandellys, we were not sure of completing, or even surviving, the race. The sleep deprivation had gone too far with less than 10 hours sleep totally during the race and we were completely exhausted and each step on the wet slippery roots and rocks during the steep descent was a like a walk in the darkest nightmare. Our teamname “Living the dream” seemed more ironic than ever at that time.

I both experienced and learned tremendously during PTL, I think it is like no other a race where you live outside the world and even time during your run – you have be in this concentrated state of mind in order to finish the race and survive. It is completely different than Tor des Géants (TDG), not only in terms of technical difficulty and toughness of the climbs and descends, but also in that this is an adventure where you really have to sustain yourself in the often harsh mountain environment with respect to all basic bodily functions like fluid and energy intake and management of feet and legs. If you are lucky, as Otto and I were, you discover how beautiful and efficient the body is as a machine taking you through this whole amazing route with reasonable time before the cut-offs. I actually think it was a disadvantage to have run TDG beforehand, as I had expected something similar in terms of friendly and helpful aid stations and refugees for instance. And, then I have not even mentioned the navigation issues. Let me just say that I am still dreaming nightmares of a pink GPS track on a white map background that I am trying to follow desperately in vain.

I was running PTL with a rather severe upper respiratory tract infection, the later part of the track my cough was rather nasty, and I think I can blame my slow recovery after the race on that. My feet managed reasonable well, however, as did my legs. But, I am still waking up drenched in sweat every night and feeling kind of woozy throughout the days. Was it worth it? It is an irrelevant question as now it is done and I have certainly earned the green Finisher west. But, I have promised both myself and my family not to run PTL in the near future in the current format again. It is simply too dangerous, I share much the same thoughts as Jill Homer of the race, and if I knew how dangerous it would be I should not have done it. Again, I have no one to blame than myself – the warning in red on the PTL homepage is there and it is completely accurate to the point (see below). I still love the mountains though, perhaps more than ever, and as my wife suggested, there are plenty of shorter skyrunning races in pretty amazing mountains out there.
 
Read these carefully before signing up for PTL
I am not sure whether I will write a longer race report from PTL, more likely I will write separately about certain aspects of the race. For now I can share a movie of the crossing of one of the glaciers during the race - the ascent to Col de la Sassière after approximately 200 kilometers and 20000 D+. We climbed this around Friday noon after having been running for approximately 90 hours.

 

I would like to thank Otto again for everything both before and during the race, and also Tobias Lindström, who should have been with us but who embarked on the much bigger adventure and became a father during the race week. I would also like to thank the race organizers, they did an amazing job both before the race following the untimely passing of Jean-Claude Marmier, and during the race despite changing weather conditions, and the challenges we faced are not to be blamed on them. All fellow PTL runners were also a great support, it truly felt like we were being part in this together as comrades. Lastly, thanks to my wonderful family - this time it really felt good to return home.

23 August 2014

PTL is approaching

I am since yesterday in Chamonix preparing for Petite Trotte a Leon (PTL) which will start on Monday 5:30 pm CET. The UTMB start arch is built, but besides that there are not many signs that the town is going to be turned into the trail and mountain running capital next week. The sales exhibition start not until Tuesday, when we will be somewhere in the Swiss alps, and starting PTL feels little like jumping the gun.
 
On the other hand is PTL more aligned with the other activities here and I had an interesting discussion today with some climbers regarding some of the more technical glacier passages at PTL. It has been a very strange summer here in Chamonix with cold weather and plenty of rain and snow and the organizers have therefore shortened the track a little bit and taken away the passages to Cabane du Trient and Cabane de Valsorey. I think it is a very good decision and it will certainly still be a formidable challenge to finish the route, which still is 294 km with 26557 meters D+. The two late glacier passages at Col de la Sassiere (after 206 km) and Col de l'Argueray (after 231 km) is still retained and we can now only hope the weather will be good enough to enable us to run the intented original course. Regretfully it looks like we might get some rain and snow during Tuesday/Wednesday, but it might be local and more in France than in the Swiss and Italian parts of the tour where we hopefully will be then.


Mont Blanc over the clouds today seen from Aiguille du Midi

I am much less nervous before PTL than I was before Tor des Geants (TDG) last year for three reasons. Firstly, obviously, I now know much more what is waiting and hopefully I will have learnt something from my mistakes at TDG. It is still going to hurt immensly, however, and I do realize that PTL is much more challenging due to the technical non way-marked course and the need to plan for food yourself to a great extent. I just read an excellent and insightfull comparison between PTL and TDG by Jill Homer and I cannot say that I did not felt my heart-rate increase and thought once again what I have signed up for. Secondly, I am much better trained this year. I have had a great pre-season both with regards to milage and aerobic speed/hill training. The last few weeks have also been great, I have had a slight cold, but nothing interferimg with my form and my legs feel absolutely great. Today and tomorrow I am adjusting to the altitude at Aiguille du Midi at 3800 meters to avoid the onset of Acute Mountain Sickness I had early on before adjusting in TDG. Finally, and most importantly, I am now part of a team and it will be great to run with Otto Elmgart. He is an outstanding ultra-runner with great results from for instance Badwater last year and previously Sparthatlon and I am sure I will learn a lot from him during the coming week.

The only sad thing, besides of course being away from the family for more than one week which indeef is painful, is that our original teammate Tobias Lindström, who was the first Swede completing PTL last year, cannot be running with us. He is not unhappy himself however as he is embarking on the bigger life adventure of becoming a father any day now. He has, as Stefan Andreazzoli did before TDG last year, been tremendously helpful in providing valuable tips and support and his spirit lives on in the name of the team which he coined; "Living the dream".

For security reasons each PTL team has to carry a GPS transmitter/beacon and this also mean that it is possible to follow the progress of the teams live at http://www.nexxtep.fr/UTMB/EN/ and http://utmb.livetrail.net. Information will also be provided at the UTMB homepage. I have race bib 10601 and Otto 10602. I will probably post something more before the race start, but now I need to continue eating and sleeping to make up for some the deficiencies in both next week.